Pyrado's Documentation ====================== Pyrado is a toolbox for reinforcement learning tailored domain randomization based on PyTorch and numpy. It is designed to be used with RcsPySim in the `SimuRLacra `_ framework. The implementations are focus on modularity rather than on performance. Installation ------------ Please choose one of the options described in the root-level `readme file of SimuRLacra `_. Where to start? --------------- Check out the provided examples or run some of the existing scripts in `Pyrado/scripts`. Content ------- .. toctree:: :hidden: :caption: Examples: :maxdepth: 1 :glob: examples/* .. toctree:: :caption: Environments: :maxdepth: 1 environments environments.barrett_wam environments.mujoco environments.pysim environments.quanser environments.rcspysim .. toctree:: :caption: Environment Wrappers: :maxdepth: 1 environment_wrappers .. toctree:: :caption: Domain Randomization: :maxdepth: 1 domain_randomization .. toctree:: :caption: Algorithms: :maxdepth: 1 algorithms algorithms.episodic algorithms.step_based algorithms.meta algorithms.regression algorithms.stopping_criteria .. toctree:: :caption: Exploration: :maxdepth: 1 exploration .. toctree:: :caption: Policies: :maxdepth: 1 policies policies.feed_back policies.feed_forward policies.recurrent policies.special .. toctree:: :caption: Spaces: :maxdepth: 1 spaces .. toctree:: :caption: Tasks & Rewards: :maxdepth: 1 tasks .. toctree:: :caption: Sampling: :maxdepth: 1 sampling .. toctree:: :caption: Logging: :maxdepth: 1 logger .. toctree:: :caption: Plotting: :maxdepth: 1 plotting .. toctree:: :caption: Utilities: :maxdepth: 1 utils * :ref:`modindex`