simple_neural_fields
SimpleNeuralField(input_size, output_size, potentials_dyn_fcn, input_embedding=None, output_embedding=None, activation_nonlin=torch.sigmoid, tau_init=10.0, tau_learnable=True, kappa_init=0.001, kappa_learnable=True, capacity_learnable=True, potentials_init=None, init_param_kwargs=None, device='cpu')
¶
Bases: PotentialBased
A simplified version of Amari's potential-based recurrent neural network, without the convolution over time.
See Also
[Luksch et al., 2012] T. Luksch, M. Gineger, M. Mühlig, T. Yoshiike, "Adaptive Movement Sequences and Predictive Decisions based on Hierarchical Dynamical Systems", International Conference on Intelligent Robots and Systems, 2012.
output_size: Number of output dimensions. For this simplified neural fields model, the number of outputs
is equal to the number of neurons in the (single) hidden layer.
input_embedding: Optional (custom) [Module][torch.nn.Module] to extract features from the inputs.
This module must transform the inputs such that the dimensionality matches the number of
neurons of the neural field, i.e., `hidden_size`. By default, a [linear layer][torch.nn.Linear]
without biases is used.
output_embedding: Optional (custom) [Module][torch.nn.Module] to compute the outputs from the activations.
This module must map the activations of shape (`hidden_size`,) to the outputs of shape (`output_size`,)
By default, a [linear layer][torch.nn.Linear] without biases is used.
activation_nonlin: Nonlinearity used to compute the activations from the potential levels.
tau_init: Initial value for the shared time constant of the potentials.
tau_learnable: Whether the time constant is a learnable parameter or fixed.
kappa_init: Initial value for the cubic decay, pass 0 to disable the cubic decay.
kappa_learnable: Whether the cubic decay is a learnable parameter or fixed.
capacity_learnable: Whether the capacity is a learnable parameter or fixed.
potentials_init: Initial for the potentials, i.e., the network's hidden state.
init_param_kwargs: Additional keyword arguments for the policy parameter initialization. For example,
`self_centric_init=True` to initialize the interaction between neurons such that they inhibit the
others and excite themselves.
device: Device to move this module to (after initialization).
Source code in neuralfields/simple_neural_fields.py
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
capacity: Optional[torch.Tensor]
property
¶
Get the capacity parameter (exists for capacity-based dynamics functions), otherwise return None
.
potentials_dot(potentials, stimuli)
¶
Compute the derivative of the neurons' potentials per time step.
\(/tau /dot{u} = f(u, s, h)\) with the potentials \(u\), the combined stimuli \(s\), and the resting level \(h\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
potentials | torch.Tensor | Potential values at the current point in time, of shape | required |
stimuli | torch.Tensor | Sum of external and internal stimuli at the current point in time, of shape | required |
Returns:
Type | Description |
---|---|
torch.Tensor | Time derivative of the potentials \(\frac{dp}{dt}\), of shape |
Source code in neuralfields/simple_neural_fields.py
399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
|
pd_capacity_21(p, s, h, tau, kappa, capacity)
¶
Capacity-based dynamics with 2 stable (\(p=-C\), \(p=C\)) and 1 unstable fix points (\(p=0\)) for \(s=0\)
\(\tau \dot{p} = s - (h - p) (1 - \frac{(h - p)^2}{C^2})\)
Notes
This potential dynamics function is strongly recommended to be used with a tanh activation function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p | torch.Tensor | Potential, higher values lead to higher activations. | required |
s | torch.Tensor | Stimulus, higher values lead to larger changes of the potentials (depends on the dynamics function). | required |
h | torch.Tensor | Resting level, a.k.a. constant offset. | required |
tau | torch.Tensor | Time scaling factor, higher values lead to slower changes of the potentials (linear dependency). | required |
kappa | Optional[torch.Tensor] | Cubic decay factor for a neuron's potential, ignored for this dynamics function. | required |
capacity | Optional[torch.Tensor] | Capacity value of a neuron's potential. | required |
Returns:
Type | Description |
---|---|
torch.Tensor | Time derivative of the potentials \(\frac{dp}{dt}\). |
Source code in neuralfields/simple_neural_fields.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
pd_capacity_21_abs(p, s, h, tau, kappa, capacity)
¶
Capacity-based dynamics with 2 stable (\(p=-C\), \(p=C\)) and 1 unstable fix points (\(p=0\)) for \(s=0\)
\(\tau \dot{p} = s - (h - p) (1 - \frac{\left| h - p \right|}{C})\)
The "absolute version" of pd_capacity_21
has a lower magnitude and a lower oder of the resulting polynomial.
Notes
This potential dynamics function is strongly recommended to be used with a tanh activation function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p | torch.Tensor | Potential, higher values lead to higher activations. | required |
s | torch.Tensor | Stimulus, higher values lead to larger changes of the potentials (depends on the dynamics function). | required |
h | torch.Tensor | Resting level, a.k.a. constant offset. | required |
tau | torch.Tensor | Time scaling factor, higher values lead to slower changes of the potentials (linear dependency). | required |
kappa | Optional[torch.Tensor] | Cubic decay factor for a neuron's potential, ignored for this dynamics function. | required |
capacity | Optional[torch.Tensor] | Capacity value of a neuron's potential. | required |
Returns:
Type | Description |
---|---|
torch.Tensor | Time derivative of the potentials \(\frac{dp}{dt}\). |
Source code in neuralfields/simple_neural_fields.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
|
pd_capacity_32(p, s, h, tau, kappa, capacity)
¶
Capacity-based dynamics with 3 stable (\(p=-C\), \(p=0\), \(p=C\)) and 2 unstable fix points (\(p=-C/2\), \(p=C/2\)) for \(s=0\)
\(\tau \dot{p} = s - (h - p) (1 - \frac{(h - p)^2}{C^2}) (1 - \frac{(2(h - p))^2}{C^2})\)
Notes
This potential dynamics function is strongly recommended to be used with a tanh activation function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p | torch.Tensor | Potential, higher values lead to higher activations. | required |
s | torch.Tensor | Stimulus, higher values lead to larger changes of the potentials (depends on the dynamics function). | required |
h | torch.Tensor | Resting level, a.k.a. constant offset. | required |
tau | torch.Tensor | Time scaling factor, higher values lead to slower changes of the potentials (linear dependency). | required |
kappa | Optional[torch.Tensor] | Cubic decay factor for a neuron's potential, ignored for this dynamics function. | required |
capacity | Optional[torch.Tensor] | Capacity value of a neuron's potential. | required |
Returns:
Type | Description |
---|---|
torch.Tensor | Time derivative of the potentials \(\frac{dp}{dt}\). |
Source code in neuralfields/simple_neural_fields.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
pd_capacity_32_abs(p, s, h, tau, kappa, capacity)
¶
Capacity-based dynamics with 3 stable (\(p=-C\), \(p=0\), \(p=C\)) and 2 unstable fix points (\(p=-C/2\), \(p=C/2\)) for \(s=0\).
\(\tau \dot{p} = \left( s + (h - p) (1 - \frac{\left| (h - p) \right|}{C}) (1 - \frac{2 \left| (h - p) \right|}{C}) \right)\)
The "absolute version" of pd_capacity_32
is less skewed due to a lower oder of the resulting polynomial.
Notes
This potential dynamics function is strongly recommended to be used with a tanh activation function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p | torch.Tensor | Potential, higher values lead to higher activations. | required |
s | torch.Tensor | Stimulus, higher values lead to larger changes of the potentials (depends on the dynamics function). | required |
h | torch.Tensor | Resting level, a.k.a. constant offset. | required |
tau | torch.Tensor | Time scaling factor, higher values lead to slower changes of the potentials (linear dependency). | required |
kappa | Optional[torch.Tensor] | Cubic decay factor for a neuron's potential, ignored for this dynamics function. | required |
capacity | Optional[torch.Tensor] | Capacity value of a neuron's potential. | required |
Returns:
Type | Description |
---|---|
torch.Tensor | Time derivative of the potentials \(\frac{dp}{dt}\). |
Source code in neuralfields/simple_neural_fields.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
pd_cubic(p, s, h, tau, kappa, capacity)
¶
Basic proportional dynamics with additional cubic decay.
\(\tau \dot{p} = s + h - p + \kappa (h - p)^3\)
Notes
This potential dynamics function is strongly recommended to be used with a sigmoid activation function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p | torch.Tensor | Potential, higher values lead to higher activations. | required |
s | torch.Tensor | Stimulus, higher values lead to larger changes of the potentials (depends on the dynamics function). | required |
h | torch.Tensor | Resting level, a.k.a. constant offset. | required |
tau | torch.Tensor | Time scaling factor, higher values lead to slower changes of the potentials (linear dependency). | required |
kappa | Optional[torch.Tensor] | Cubic decay factor for a neuron's potential. | required |
capacity | Optional[torch.Tensor] | Capacity value of a neuron's potential, ignored for this dynamics function. | required |
Returns:
Type | Description |
---|---|
torch.Tensor | Time derivative of the potentials \(\frac{dp}{dt}\). |
Source code in neuralfields/simple_neural_fields.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
pd_linear(p, s, h, tau, kappa, capacity)
¶
Basic proportional dynamics.
\(\tau \dot{p} = s - p\)
Notes
This potential dynamics function is strongly recommended to be used with a sigmoid activation function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p | torch.Tensor | Potential, higher values lead to higher activations. | required |
s | torch.Tensor | Stimulus, higher values lead to larger changes of the potentials (depends on the dynamics function). | required |
h | torch.Tensor | Resting level, a.k.a. constant offset. | required |
tau | torch.Tensor | Time scaling factor, higher values lead to slower changes of the potentials (linear dependency). | required |
kappa | Optional[torch.Tensor] | Cubic decay factor for a neuron's potential, ignored for this dynamics function. | required |
capacity | Optional[torch.Tensor] | Capacity value of a neuron's potential, ignored for this dynamics function. | required |
Returns:
Type | Description |
---|---|
torch.Tensor | Time derivative of the potentials \(\frac{dp}{dt}\). |
Source code in neuralfields/simple_neural_fields.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|