Source code for tests.environment_wrappers.test_domain_param_transformation

# Copyright (c) 2020, Fabio Muratore, Honda Research Institute Europe GmbH, and
# Technical University of Darmstadt.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
# 3. Neither the name of Fabio Muratore, Honda Research Institute Europe GmbH,
#    or Technical University of Darmstadt, nor the names of its contributors may
#    be used to endorse or promote products derived from this software without
#    specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL FABIO MURATORE, HONDA RESEARCH INSTITUTE EUROPE GMBH,
# OR TECHNICAL UNIVERSITY OF DARMSTADT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

import random
from typing import Type

import pytest
from tests.conftest import VORTEX_ONLY_DOMAIN_PARAM_LIST, m_needs_bullet, m_needs_mujoco, m_needs_vortex

import pyrado
from pyrado.domain_randomization.transformations import DomainParamTransform
from pyrado.environment_wrappers.utils import inner_env
from pyrado.environments.pysim.base import SimPyEnv
from pyrado.environments.sim_base import SimEnv
from pyrado.utils.bijective_transformation import LogTransformation, SqrtTransformation


[docs]@pytest.mark.wrapper @pytest.mark.parametrize( "env", [ "default_bobd", "default_bob", "default_omo", "default_pend", "default_qbb", "default_qqst", "default_qqsu", "default_qcpst", "default_qcpsu", pytest.param("default_p3l_ika_bt", marks=m_needs_bullet), pytest.param("default_p3l_ta_bt", marks=m_needs_bullet), pytest.param("default_p3l_ta_vx", marks=m_needs_vortex), pytest.param("default_bop2d_bt", marks=m_needs_bullet), pytest.param("default_bop2d_vx", marks=m_needs_vortex), pytest.param("default_bop5d_bt", marks=m_needs_bullet), pytest.param("default_bop5d_vx", marks=m_needs_vortex), pytest.param("default_bs_ds_pos_bt", marks=m_needs_bullet), pytest.param("default_bs_ds_pos_vx", marks=m_needs_vortex), pytest.param("default_bit_ika_pos_bt", marks=m_needs_bullet), pytest.param("default_bit_ds_vel_bt", marks=m_needs_bullet), pytest.param("default_cth", marks=m_needs_mujoco), pytest.param("default_hop", marks=m_needs_mujoco), pytest.param("default_wambic", marks=m_needs_mujoco), ], indirect=True, ) @pytest.mark.parametrize("trafo_class", [LogTransformation, SqrtTransformation], ids=["log", "sqrt"]) def test_domain_param_transforms(env: SimEnv, trafo_class: Type): pyrado.set_seed(0) # Create a mask for a random domain parameter offset = 1 idx = random.randint(0, len(env.supported_domain_param) - 1) sel_dp_change = list(env.supported_domain_param)[idx] sel_dp_fix = list(env.supported_domain_param)[(idx + offset) % len(env.supported_domain_param)] while ( offset == 1 or any([item in sel_dp_change for item in VORTEX_ONLY_DOMAIN_PARAM_LIST]) or any([item in sel_dp_fix for item in VORTEX_ONLY_DOMAIN_PARAM_LIST]) ): idx = random.randint(0, len(env.supported_domain_param) - 1) sel_dp_change = list(env.supported_domain_param)[idx] sel_dp_fix = list(env.supported_domain_param)[(idx + offset) % len(env.supported_domain_param)] offset += 1 mask = (sel_dp_change,) wenv = DomainParamTransform(env, mask, trafo_class()) # Check 5 random values for _ in range(5): # Change the selected domain parameter new_dp_val = random.random() * env.get_nominal_domain_param()[sel_dp_change] new_dp_val = abs(new_dp_val) + 1e-6 # due to the domain of the new params transformed_new_dp_val = wenv.forward(new_dp_val) wenv.domain_param = {sel_dp_change: transformed_new_dp_val} # calls inverse transform if not isinstance(inner_env(wenv), SimPyEnv): wenv.reset() # the RcsPySim and MujocoSim classes need to be reset to apply the new domain param # Test the actual domain param and the the getters assert inner_env(wenv)._domain_param[sel_dp_change] == pytest.approx(new_dp_val, abs=1e-5) assert wenv.domain_param[sel_dp_change] == pytest.approx(new_dp_val, abs=1e-5) assert wenv.domain_param[sel_dp_fix] != pytest.approx(new_dp_val)