Source code for tests.test_domain_randomization

# Copyright (c) 2020, Fabio Muratore, Honda Research Institute Europe GmbH, and
# Technical University of Darmstadt.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
# 3. Neither the name of Fabio Muratore, Honda Research Institute Europe GmbH,
#    or Technical University of Darmstadt, nor the names of its contributors may
#    be used to endorse or promote products derived from this software without
#    specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL FABIO MURATORE, HONDA RESEARCH INSTITUTE EUROPE GMBH,
# OR TECHNICAL UNIVERSITY OF DARMSTADT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

from copy import deepcopy

import numpy as np
import pytest
import torch as to
from tests.conftest import m_needs_bullet, m_needs_mujoco

import pyrado
from pyrado.domain_randomization.domain_parameter import (
    BernoulliDomainParam,
    MultivariateNormalDomainParam,
    NormalDomainParam,
    SelfPacedDomainParam,
    UniformDomainParam,
)
from pyrado.domain_randomization.domain_randomizer import DomainRandomizer
from pyrado.domain_randomization.utils import param_grid
from pyrado.environments.sim_base import SimEnv


[docs]def assert_is_close(param, info_expected): info_actual = param.info() assert list(sorted(info_actual.keys())) == list(sorted(info_expected.keys())) for key, expected in info_expected.items(): if key in ["name", "clip_lo", "clip_up"]: assert info_actual[key] == expected else: assert to.allclose( info_actual[key], expected ), f"key: {key}, actual: {info_actual[key]}, expected: {expected}"
[docs]@pytest.mark.parametrize( "dp", [ UniformDomainParam(name="", mean=3.0, halfspan=11.0, clip_lo=-5, clip_up=5), NormalDomainParam(name="", mean=10, std=1.0, clip_lo=9, clip_up=11), MultivariateNormalDomainParam(name="", mean=to.ones((2, 1)), cov=to.eye(2), clip_lo=-1, clip_up=1.0), MultivariateNormalDomainParam(name="", mean=10 * to.ones((2,)), cov=2 * to.eye(2), clip_up=11), BernoulliDomainParam(name="", val_0=2, val_1=5, prob_1=0.8), BernoulliDomainParam(name="", val_0=-3, val_1=5, prob_1=0.8, clip_up=4), ], ids=["U", "N", "MVN_v1", "MVN_v2", "B_v1", "B_v2"], ) @pytest.mark.parametrize("num_samples", [1, 5, 100]) def test_domain_param(dp, num_samples): # assert dp == dp fns = dp.get_field_names() assert fns is not None s = dp.sample(num_samples) assert isinstance(s, list) assert len(s) == num_samples
[docs]def test_self_paced_domain_param_make_broadening(): param = SelfPacedDomainParam.make_broadening(["a"], [1.0], 0.0004, 0.04) assert_is_close( param, { "name": ["a"], "target_mean": to.tensor([1.0]).double(), "target_cov_chol": to.tensor([0.2]).double(), "init_mean": to.tensor([1.0]).double(), "init_cov_chol": to.tensor([0.02]).double(), "clip_lo": -pyrado.inf, "clip_up": pyrado.inf, }, )
[docs]def test_self_paced_domain_param_from_domain_randomizer(): param = SelfPacedDomainParam.from_domain_randomizer( DomainRandomizer(NormalDomainParam(name="a", mean=1.0, std=1.0)), init_cov_factor=0.0004, target_cov_factor=0.04, ) assert_is_close( param, { "name": ["a"], "target_mean": to.tensor([1.0]).double(), "target_cov_chol": to.tensor([0.2]).double(), "init_mean": to.tensor([1.0]).double(), "init_cov_chol": to.tensor([0.02]).double(), "clip_lo": -pyrado.inf, "clip_up": pyrado.inf, }, )
[docs]def test_randomizer(default_randomizer): print(default_randomizer) # Generate 7 samples default_randomizer.randomize(7) # Test all variations of the getter function's parameters format and dtype pp_3_to_dict = default_randomizer.get_params(3, fmt="dict", dtype="torch") assert isinstance(pp_3_to_dict, dict) assert isinstance(pp_3_to_dict["mass"], list) assert len(pp_3_to_dict["mass"]) == 3 assert isinstance(pp_3_to_dict["mass"][0], to.Tensor) assert isinstance(pp_3_to_dict["multidim"][0], to.Tensor) and pp_3_to_dict["multidim"][0].shape[0] == 2 pp_3_to_list = default_randomizer.get_params(3, fmt="list", dtype="torch") assert isinstance(pp_3_to_list, list) assert len(pp_3_to_list) == 3 assert isinstance(pp_3_to_list[0], dict) assert isinstance(pp_3_to_list[0]["mass"], to.Tensor) assert isinstance(pp_3_to_list[0]["multidim"], to.Tensor) and pp_3_to_list[0]["multidim"].shape[0] == 2 pp_3_np_dict = default_randomizer.get_params(3, fmt="dict", dtype="numpy") assert isinstance(pp_3_np_dict, dict) assert isinstance(pp_3_np_dict["mass"], list) assert len(pp_3_np_dict["mass"]) == 3 assert isinstance(pp_3_np_dict["mass"][0], np.ndarray) assert isinstance(pp_3_np_dict["multidim"][0], np.ndarray) and pp_3_np_dict["multidim"][0].size == 2 pp_3_np_list = default_randomizer.get_params(3, fmt="list", dtype="numpy") assert isinstance(pp_3_np_list, list) assert len(pp_3_np_list) == 3 assert isinstance(pp_3_np_list[0], dict) assert isinstance(pp_3_np_list[0]["mass"], np.ndarray) assert isinstance(pp_3_np_list[0]["multidim"], np.ndarray) and pp_3_np_list[0]["multidim"].size == 2 pp_all_to_dict = default_randomizer.get_params(-1, fmt="dict", dtype="torch") assert isinstance(pp_all_to_dict, dict) assert isinstance(pp_all_to_dict["mass"], list) assert len(pp_all_to_dict["mass"]) == 7 assert isinstance(pp_all_to_dict["mass"][0], to.Tensor) assert isinstance(pp_all_to_dict["multidim"][0], to.Tensor) and pp_all_to_dict["multidim"][0].shape[0] == 2 pp_all_to_list = default_randomizer.get_params(-1, fmt="list", dtype="torch") assert isinstance(pp_all_to_list, list) assert len(pp_all_to_list) == 7 assert isinstance(pp_all_to_list[0], dict) assert isinstance(pp_all_to_list[0]["mass"], to.Tensor) assert isinstance(pp_all_to_list[0]["multidim"], to.Tensor) and pp_all_to_list[0]["multidim"].shape[0] == 2 pp_all_np_dict = default_randomizer.get_params(-1, fmt="dict", dtype="numpy") assert isinstance(pp_all_np_dict, dict) assert isinstance(pp_all_np_dict["mass"], list) assert len(pp_all_np_dict["mass"]) == 7 assert isinstance(pp_all_np_dict["mass"][0], np.ndarray) assert isinstance(pp_all_np_dict["multidim"][0], np.ndarray) and pp_all_np_dict["multidim"][0].size == 2 pp_all_np_list = default_randomizer.get_params(-1, fmt="list", dtype="numpy") assert isinstance(pp_all_np_list, list) assert len(pp_all_to_list) == 7 assert isinstance(pp_all_np_list[0], dict) assert isinstance(pp_all_np_list[0]["mass"], np.ndarray) assert isinstance(pp_all_np_list[0]["multidim"], np.ndarray) and pp_all_np_list[0]["multidim"].size == 2
[docs]def test_rescaling(default_randomizer): # This test relies on a fixed structure of the default_randomizer (mass is ele 0, and length is ele 2 in the list) randomizer = deepcopy(default_randomizer) randomizer.rescale_distr_param("std", 12.5) # Check if the right parameter of the distribution changed assert randomizer.domain_params[0].std == 12.5 * default_randomizer.domain_params[0].std assert randomizer.domain_params[2].std == 12.5 * default_randomizer.domain_params[2].std # Check if the other parameters were unchanged (lazily just check one attribute) assert randomizer.domain_params[0].mean == default_randomizer.domain_params[0].mean assert randomizer.domain_params[2].mean == default_randomizer.domain_params[2].mean
[docs]def test_param_grid(): # Create a parameter grid spec pspec = {"p1": np.array([0.1, 0.2]), "p2": np.array([0.4, 0.5]), "p3": 3} # fixed value # Create the grid entries pgrid = param_grid(pspec) # Check for presence of all entries, their order is not mandatory assert {"p1": 0.1, "p2": 0.4, "p3": 3} in pgrid assert {"p1": 0.2, "p2": 0.4, "p3": 3} in pgrid assert {"p1": 0.1, "p2": 0.5, "p3": 3} in pgrid assert {"p1": 0.2, "p2": 0.5, "p3": 3} in pgrid
[docs]@pytest.mark.parametrize( "env", [ "default_bob", "default_omo", "default_pend", "default_qbb", "default_qcpst", "default_qcpsu", "default_qqst", "default_qqsu", pytest.param("default_qqst_mj", marks=m_needs_mujoco), pytest.param("default_qqsu_mj", marks=m_needs_mujoco), pytest.param("default_bop2d_bt", marks=m_needs_bullet), pytest.param("default_bop5d_bt", marks=m_needs_bullet), pytest.param("default_cth", marks=m_needs_mujoco), pytest.param("default_hop", marks=m_needs_mujoco), pytest.param("default_hum", marks=m_needs_mujoco), pytest.param("default_ant", marks=m_needs_mujoco), pytest.param("default_wambic", marks=m_needs_mujoco), ], ids=[ "bob", "omo", "pend", "qbb", "qcp-st", "qcp-su", "qq-st", "qq-su", "qq-st-mj", "qq-su-mj", "bop2d", "bop5d", "cth", "hop", "hum", "ant", "wam-bic", ], indirect=True, ) def test_setting_dp_vals(env: SimEnv): # Loop over all possible domain parameters and set them to a random value for _ in range(5): for dp_key in env.supported_domain_param: if any([s in dp_key for s in ["slip", "compliance", "linearvelocitydamping", "angularvelocitydamping"]]): # Skip the parameters that are only available in Vortex but not in Bullet assert True else: nominal_val = env.domain_param.get(dp_key) rand_val = nominal_val + nominal_val * np.random.rand() / 10 env.reset(domain_param={dp_key: rand_val}) assert env.domain_param[dp_key] == pytest.approx(rand_val, abs=5e-4) # rolling friction is imprecise